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The two-dimensional motion of a circular cylinder freely falling or rising in an infinite
fluid is investigated numerically for the range of Reynolds number Re < 188 (Galileo
number G < 163), where the wake behind the cylinder remains two-dimensional, using
a combined formulation of the governing equations for the fluid and the dynamic
equations for the cylinder. The effect of vortex shedding on the motion of the freely
falling or rising cylinder is clearly shown. As the streamwise velocity of the cylinder
increases due to gravity, the periodic vortex shedding induces a periodic motion of the
cylinder, which is manifested by the generation of the angular velocity vector of the
cylinder parallel to the cross-product of the gravitational acceleration vector and
the transverse velocity vector of the cylinder. Correlations of the Strouhal–Reynolds-
number and Strouhal–Galileo-number relationship are deduced from the results. The
Strouhal number is found to be smaller than that for the corresponding fixed circular
cylinder when the two Reynolds numbers based on the streamwise terminal velocity
of the freely falling or rising circular cylinder and the free-stream velocity of the
fixed one are the same. From numerical experiments, it is shown that the transverse
motion of the cylinder plays a crucial role in reducing the Strouhal number. The
effect of the transverse motion is similar to that of suction flow on the low-pressure
side, where a vortex is generated and then separates, so that the pressure on this side
recovers with the vortex separation retarded. The effects of the transverse motion on
the lift, drag and moment coefficients are also discussed. Finally, the effect of the
solid/fluid density ratio on Strouhal–Reynolds-number relationship is investigated
and a plausible correlation is proposed.

1. Introduction
Since Strouhal (1878) first measured the vortex shedding frequency in the wake of a

circular cylinder, the flow around a circular cylinder has been the subject of numerous
studies. Notably, Lord Rayleigh (1945) put forward a functional relationship between

† Author to whom correspondence should be addressed: hgchoi@snut.ac.kr



34 K. Namkoong, J. Y. Yoo and H. G. Choi

a frequency parameter (now called the Strouhal number, St) and a viscosity parameter
(the inverse of what is now called the Reynolds number, Re). Recent developments in
the understanding of wake vortex dynamics were extensively reviewed by Williamson
(1996). In addition to the flows around a fixed circular cylinder, the flows around an
oscillating or rotating cylinder have also been studied extensively after it was found
that the self-excitation by the fluid motion was the main reason for the breakup of
Tacoma bridge (Billah & Scanlan 1991).

The closely related subject of the flow around a freely falling sphere or clusters
of spheres has been investigated by many researchers. Karamanev & Nikolov (1992)
conducted an experiment on the motion of a freely rising or falling sphere in distilled
water. They claimed that the trajectory of either a rising or falling sphere was a vertical
straight line when the terminal Reynolds number is smaller than 130 or the particle
density is larger than 0.9 g cm−3. Karamanev, Chavarie & Mayer (1996) studied the
change in the drag coefficient between a very light particle (ρs ∼ 0.3 g cm−3) and a
particle with density close to that of water. They showed that the particle trajectory is
a spiral and the Strouhal number based on a characteristic length scale of the spiral
motion of a rising sphere is comparable to that of the flow around a fixed sphere
when the terminal velocity of the particle is over 14.5 cm s−1.

More recent numerical and experimental studies on the flow around a sphere have
focused on detailed flow characteristics that depend on the Galileo number and
the density ratio of the sphere to the surrounding fluid. Jenny, Bouchet & Dušek
(2003) studied a regular, symmetry-breaking bifurcation of the flow around a freely
falling or ascending sphere in a Newtonian fluid by using the spectral-spectral-element
method. In their study, two independent dimensionless parameters, the Galileo number
and the density ratio, were introduced and they showed that the trajectory of the
regular bifurcation is characterized by steady oblique straight lines. They successfully
conducted a direct numerical simulation of very light particles using a fully implicit
algorithm which couples the motion equation of a sphere with the time-stepping
algorithm of the Navier–Stokes equation. As a result of the explicit treatment of
the nonlinear terms of the Navier–Stokes equations, the Stokes-like equations were
solved for the flow field. Thus, the coupling of the motion of the sphere with the flow
field could be achieved in an efficient manner by utilizing the linearity of the Stokes
equation (Jenny & Dušek 2004). By extending the numerical results of the primary
bifurcation (Jenny et al. 2003), Jenny, Dušek & Bouchet (2004) studied the secondary,
Hopf bifurcation using two, dimensionless parameters the solid/fluid density ratio and
the Galileo number. An experimental verification of the numerical study of Jenny
et al. (2004) was conducted recently by Veldhuis & Biesheuvel (2007). In those
studies, a diagram of the instability and transition of a falling or ascending sphere was
obtained for a wide range of the density ratio and the Galileo number, and the regimes
are classified into steady and oblique, oblique and oscillating, zigzagging periodic and
three-dimensional chaotic. One of striking differences between the numerical study
and the experimental study is that the experimental trajectory of a falling sphere may
be non-vertical as the Reynolds number increases (Veldhuis et al. 2005). This is not
consistent with the claim of Jenny et al. (2004) that only ascending spheres can have
a zigzagging motion.

According to the experimental study on a rising or falling cylinder by Horowitz &
Williamson (2006), the amplitude of the transverse motion of a falling cylinder is
about 5 % of the diameter of the cylinder when the density ratios are about 1.4
and 2.0. Although the amplitude data for small density differences (small Reynolds
numbers less than 200) are not given in the paper, presumably because a very long
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distance is necessary for a falling cylinder to enter a periodic mode, the amplitude
data from Horowitz & Williamson (2006) are comparable to those of the present
two-dimensional numerical study. They also showed that a rising cylinder experiences
a sudden jump in the amplitude of transverse motion for a density ratio of less than
0.54.

A numerical computation of the two-dimensional flow around a freely falling
circular cylinder in a channel was performed by Hu, Joseph & Crochet (1992), Feng,
Hu & Joseph (1994) and Choi (2000). Hu et al. (1992)and Choi (2000), who studied
the sedimentation due to gravity of a circular cylinder in a channel, reported that
the vortex shedding frequency, i.e. St, becomes smaller than that associated with the
flow around a fixed circular cylinder. However, it was not elucidated whether this
phenomenon is due to the existence of channel walls (Chen, Pritchard & Tavener
1995; Zovatto & Pedrizzetti 2001) or the motion of the cylinder.

In view of all the previous studies, there is a need for further investigations on
the two-dimensional flow around a freely falling or rising circular cylinder in an
infinite fluid. The vortex shedding will induce some motion of the cylinder, which in
turn will affect the flow field. It appears that St for the flow around a freely falling
or rising circular cylinder in an infinite fluid will be affected by the motion of the
cylinder due to the vortex shedding. Thus, the objective of the present paper is to
investigate the two-dimensional flow around a freely falling or rising circular cylinder.
The relationship between Re and St is obtained for small density difference, and
compared with that for the flow around a fixed circular cylinder. In the case of large
density difference, a new formula representing the effect of the solid/fluid density
ratio and the Reynolds number on the Strouhal number is proposed. Furthermore,
the interactions between the cylinder and fluid motions are investigated by applying
various combinations of constraints on the rotational and translational degrees of
freedom of the cylinder.

2. Numerical method
In order to solve the present problem, a combined finite-element formulation based

on the P2P1 Galerkin method and ALE technique (Choi 2000; Hu, Patankar & Zhu
2001) is adopted to describe the motion of the cylinder, in combination with the
solution of the Navier–Stokes equations. In this combined formulation, the motion
of the cylinder is coupled with the flow variables (pressure and velocity fields) via
the hydrodynamic force and moment acting on the cylinder. Therefore, a global
matrix containing both flow variables and velocity components of the cylinder is
constructed. Since the bandwidth of the global matrix is very large owing to the
coupling of the cylinder motion with the flow variables, an effective preconditioning
method has to be employed to solve the global matrix by an iterative solver. In the
present study, the Bi-CGSTAB iterative solver with an AILU (Adapted Incomplete
LU)-type preconditioner for the combined finite-element formulation based on the
P2P1 Galerkin method is adopted for this purpose. The preconditioner is an extended
version of the AILU preconditioning method for the incompressible Navier–Stokes
equations (Nam, Choi & Yoo 2002). For fully resolved numerical solutions with an
efficient distribution of nodes of an unstructured mesh around the single cylinder,
an adaptive mesh refinement technique (Nithiarasu & Zienkiewicz 2000), which is
based on the error estimation of the shear-stress field, has been used. A more detailed
description of the numerical methods used in the present study is given in the
Appendix.
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Figure 1. (a) Computational mesh and boundary conditions, (b) instantaneous pressure
contours, and (c) instantaneous vorticity contours at Re =100 for a fixed cylinder.

3. Results
3.1. Two-dimensional laminar flow around a fixed circular cylinder

For the validation of the adaptive finite-element code developed in the present study,
two-dimensional laminar flow around a fixed circular cylinder is tested. The wake
flow behind a fixed circular cylinder is known to remain two-dimensional when the
Reynolds number, Re = U∞D/νf , based on the free-stream velocity U∞, the cylinder
diameter D, and the kinematic viscosity of fluid νf , is lower than a certain critical
value, about 190 (Henderson 1997; Williamson & Brown 1998). In this section, two-
dimensional numerical simulations are performed at six different Reynolds numbers,
Re = 60, 80, 100, 120, 140, and 160. The computational mesh and boundary conditions
are shown in figure 1(a). The size of the computational domain has been set to 70D

in the streamwise direction (20D in front of the cylinder centre and 50D behind) and
100D in the transverse direction (50D on both left and right sides of the cylinder
centre). The dimensionless time step (�tU ∞/D) is 0.05 for all cases. The total of
numbers nodes, vertex nodes, and elements are 25 386, 6401, and 12 584, respectively,
after 29 mesh refinements. Instantaneous pressure contours and vorticity contours
at Re = 100 are shown in figure 1(b) and figure 1(c), respectively, where the typical
wake pattern due to periodic vortex shedding is clearly seen. The Strouhal number
(St = fD/U∞, where f is the vortex shedding frequency) is calculated as St = 0.1653,
which is in good agreement with the value in the literature. The relation between
St and Re is plotted and compared with the experimental results of Fey, König &
Eckelmann (1998) and Williamson & Brown (1998) in figure 2 where one can see
good agreement again. Fey et al. (1998) and Williamson & Brown (1998) proposed
the following formula for the relation between St and Re:

St =A +
B√
Re

, (3.1)

where A is related related to the size or physical shape of the body and B/
√

Re is
associated with the shear layer thickness (Williamson & Brown 1998). The constants
A and B in equation (3.1) are found to be 0.2672 and −1.0162, respectively, both
of which are very close to those of Williamson & Brown (1998) (A= 0.2665 and
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Figure 2. St–Re relation for two-dimensional laminar flow around a fixed circular cylinder,
compared with other experimental results.

�t = 0.02 s �t = 0.01 s �t = 0.005 s �t = 0.0025 s

Mesh I 0.186 cm s−1 (0.18572) 0.201 cm s−1 (0.18549) 0.210 cm s−1 (0.18535) 0.212 cm s−1 (0.18530)
Mesh II 0.187 cm s−1 (0.18572) 0.201 cm s−1 (0.18549) 0.210 cm s−1 (0.18535) −
Mesh III 0.187 cm s−1 (0.18572) 0.201 cm s−1 (0.18549) − −

Table 1. Dependence of the maximum transverse velocity (Strouhal number) on time-step
size and grid resolution at ρs/ρf = 1.010 and G = 138 (Re = 156).

B = −1.0180) and Fey et al. (1998) (A= 0.2684 and B = −1.0356). Therefore, it can
be said that the present adaptive code based on h-refinement is efficient in accurately
resolving the wake flow behind a blunt body.

3.2. Spatial and temporal resolution test

In order to prove that the present two-dimensional combined solutions are grid and
time-step independent, spatial and temporal resolution tests were conducted, where
the density of the freely falling cylinder is 1.01 times that of the surrounding fluid
(water). The Reynolds number based on the terminal velocity of the cylinder and the
cylinder diameter is 156. As shown in table 1, four time-step sizes and three different
unstructured meshes consisting of P2P1 triangular elements are used in order to
compare the maximum transverse velocity and the Strouhal number during periodic
motion. At the initial stage of computation, Meshes I, II and III are generated by
placing 64, 80 and 96 nodes on the particle surface, respectively. In the course of
the computation, the mesh adaption described in the Appendix is applied wherever
necessary. At the final stage of computation after adaption, the numbers of nodes for
Meshes I, II and III are 29 125, 40 893 and 42 799, respectively. Table 1 shows that
the present numerical results are more dependent on the time-step size than on the
type of mesh used. Therefore, Mesh I with the time-step size of 0.005 s is adopted for
all the simulations of the present study. It should be also noted that the maximum
difference in the Strouhal number is less than 0.2 % for the results given in table 1.
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3.3. Two-dimensional motion of a freely falling or rising circular cylinder in an infinite
fluid with small density difference

Assuming that the wake flow behind a freely falling or rising circular cylinder remains
two-dimensional over approximately the same Re range as that behind a fixed circular
cylinder, two-dimensional numerical simulations were performed at seven different
Reynolds numbers, based on the streamwise terminal velocity Ut , the cylinder diameter
D, and the kinematic viscosity of the fluid νf , i.e. Re = UtD/νf = 66, 96, 119, 138,
156, 171 and 185. Both the fluid and the cylinder are initially at rest and the cylinder
is set into free-fall or free-rise motion abruptly due to gravity in an infinite fluid for
t � 0 s. Note that the Reynolds number is not an independent variable but dependent
on the Galileo number G(=(|ρs/ρf − 1|gD3)1/2/νf ) and the density ratio ρs/ρf ,
where ρs , ρf , g represent the density of the cylinder, the density of the fluid and the
magnitude of gravitational acceleration, respectively. Therefore, the Reynolds numbers
we investigate are obtained by keeping fixed the density of the fluid, the gravitational
acceleration, and the diameter of the cylinder such that ρf =0.996 g cm−3, D = 0.5 cm,
and gx = −981 cm s−2, and varying the density of the cylinder such that ρs/ρf =1.002,
1.004, 1.006, 1.008, 1.010, 1.012 and 1.014 for the falling cases and ρs/ρf =0.998,
0.996, 0.994, 0.992, 0.990, 0.988, 0.986 for the rising cases. Cases for ρs/ρf > 1.014
and ρs/ρf < 0.986 are discarded because the Reynolds numbers exceed the two-
dimensional wake flow limit, i.e. Re > 190 (Henderson 1997; Williamson & Brown
1998). The Galileo numbers corresponding to respective Reynolds numbers, G(Re)
are 62(66), 87(96), 107(119), 123(138), 138(156), 151(171), 163(185) in both falling and
rising cases, so that the Galileo number is linearly related to the Reynolds number:
G =0.851Re + 5.547.

Time histories of the translational velocity components and angular velocity of the
freely falling cylinder at ρs/ρf = 1.010 and G =138 (Ut = 2.501 cm s−1 and Re = 156)
are shown in figure 3, where Up and Vp are the streamwise and transverse velocity
components of the cylinder in the x- and y-directions, respectively, and ωp is the
angular velocity of the cylinder. For tU t /D > 60, the motion of the cylinder is almost
periodic. Note that the total cylinder velocity is almost the same as Up due to the
very small contribution of Vp . A schematic illustrating the motion of the freely falling
cylinder in an infinite fluid is shown in figure 4, which shows that when the cylinder
falls rotating in the positive z-direction it moves in the negative y-direction and vice
versa. That is, the direction of the angular velocity vector ω of the falling cylinder is
given by the cross-product of the gravitational acceleration and the velocity vector in
the transverse direction:

ω//(g × V ). (3.2)

It is noteworthy that equation (3.2) is in accordance with the Bernoulli theorem, as
will be seen in detail later (see figures 6a and 7).

For a freely falling or rising cylinder, the Strouhal number is defined as St = fD/Ut ,
where f is the vortex shedding frequency or oscillation frequency of the lift force. The
St–Re and St–G relations for the freely falling and rising cylinders with small density
difference are shown in figure 5(a), where one can see that the relations for the freely
rising cylinder are the same as for the freely falling cylinder within computational
error. While a falling cylinder and a rising cylinder with the same density difference
have the same magnitude of driving force (gravity minus buoyant force), the mass of
the rising cylinder is smaller than that of the falling cylinder (refer to equation (A 6)
in the Appendix). Thus, the rising cylinder tends to move more violently than the
falling cylinder when the density difference is the same. As will be revealed in § 3.4 on
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Figure 3. Time histories of streamwise and transverse velocity components (Up and Vp)
and angular velocity (ωp) of the freely falling cylinder, where Ut is the streamwise terminal

velocity of the cylinder: ρs/ρf = 1.01, G =138, Re = 156, Ut = 2.501 cm s−1. Note that the total
magnitude of the cylinder velocity is almost the same as Up due to the very small contribution
of Vp .
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Figure 4. Schematic illustrating the motion of the freely falling cylinder.

the effect of a large density difference, the motion of the rising cylinder is different
from that of the falling cylinder even when the absolute magnitude of the density
difference is the same, although the St–G relation of the present section turns out to
be nearly the same for both a falling cylinder and a rising cylinder with the same
absolute magnitude of the density difference. The St–Re relation for the freely falling
cylinder obtained by curve-fitting using equation (3.1) is shown in figure 5(b). The
result of Williamson & Brown (1998) for the flow around a fixed circular cylinder is
also shown for comparison. It is apparent that St for the freely falling circular cylinder
is smaller than for the fixed circular cylinder when Re based on the terminal velocity
of the freely falling circular cylinder and that based on the free-stream velocity of
the fixed circular cylinder are the same. The constants A and B in equation (3.1) are
found to be 0.2404 and −0.9078, respectively, both of which are lower than those of
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laminar flow around a fixed circular cylinder is also shown for comparison.

Direction of motion Falling Rising Fixed

Constraints 010 011 110 111 001 100 101 111 101 000
St 0.1659 0.1673 0.1676 0.1684 0.1860 0.1843 0.1847 0.1687 0.1842 0.1868

Table 2. St from ‘numerical experiments’ with eight different combinations of constraints at
ρs/ρf = 1.010 and G = 138 (Re = 156).

Williamson & Brown (1998) (A= 0.2665 and B = −1.0180). The same form of the
correlation between the Strouhal number and the Galileo number can be found by
curve-fitting: St =0.2458 − 0.9187/G0.5. The reason for these reduced St values could
be only that the cylinder is free to move in the present study.

To understand this more physically, ‘numerical experiments’ are carried out at the
same Re as in figure 3, but with constraints placed on rotational and/or translational
degrees of freedom of the cylinder motion. Specifically, we denote a free-to-move
state of a velocity component by ‘1’ and a frozen state by ‘0’. With this notation,
we can make eight different combinations of constraints on (Up , Vp , ωp): (111) –
unconstrained motion; (110) – ωp = 0, Up and Vp unconstrained; (101) – Vp = 0, Up

and ωp unconstrained; (100) – Vp = ωp = 0, Up unconstrained; (011) – Up = constant,
Vp and ωp unconstrained; (010) – Up = constant, ωp = 0, Vp unconstrained; (001) –
Up = constant, Vp =0, ωp unconstrained; (000) – Up = constant, Vp = ωp = 0. The
flow field of (000) is the same as a uniform flow around a fixed cylinder after a
Galilean transformation. The results of these ‘numerical experiments’ are given in
table 2. Note that only for the combinations (101), (100) and (001) are St values
as high as that for the fixed circular cylinder, and those for the combinations (111),
(110), (011) and (010) are smaller than that for the fixed circular cylinder. This result
suggests that the transverse motion of the cylinder plays a crucial role in reducing St
for the laminar flow around the freely falling circular cylinder, while the rotation of
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the freely falling cylinder has a negligible effect on the reduction of St. This is also
the case for the freely rising cylinders as can be seen from table 2.

Because St represents the frequency of vortex shedding, the fact that it is reduced
means that the vortex shedding is retarded. The time histories of the resultant lift
coefficient CL (=Lift/(0.5ρf U 2

t D)) and the corresponding transverse position Yp of
the cylinder at ρs/ρf = 1.010 and G =138 (Re = 156) are shown on figure 6(a). For
0 < t < (4/8)T , the cylinder moves towards its maximum transverse position (Yp)max

while the lift force approaches its minimum value. Note that vortex shedding occurs
on the left (+y) side at t = (2/8)T , when the cylinder is located transversely at the
mid-point (0− → 0+) and the lift force is zero (0+ → 0−). After this vortex shedding,
the cylinder moves transversely beyond the mid-position until (Yp)max is reached at
t = (4/8)T . The reason for the turning of the cylinder into the –y direction at t = (4/8)T
is that after the vortex shedding on the left (+y) side at t = (2/8)T , a vortex starts to
roll up on the right (–y) side, where the local pressure is smaller than the surroundings,
such that the cylinder moves in the –y direction. For (4/8)T < t < (8/8)T , the cylinder
moves towards its minimum transverse position (Yp)min while the lift force approaches
its maximum value. It can be easily deduced that the phase difference between CL and
Yp should be 180◦, which corresponds to the two-dimensional wake flow at Re < 190
and a harmonic oscillation of the cylinder with small density difference. The amplitude
of the transverse motion of the cylinder is found to be small, 0.08D. Another vortex
shedding occurs on the right (–y) side at t = (6/8)T , when the cylinder is located
transversely at the mid-point (0+ → 0−) and the lift force is zero again (0− → 0+).
After this vortex shedding, the cylinder moves transversely past the mid-position until
(Yp)min is reached at t = (8/8)T . Corresponding to the previous shedding, the reason
for the turn of the cylinder in the +y direction at t = (8/8)T is that after the vortex
shedding on the right (–y) side at t =(6/8)T , a vortex starts to roll up on the left (+y)
side, where the local pressure is smaller than the surroundings, so that the cylinder
moves in the +y direction.
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The two-dimensional trajectory of the cylinder up to tU t/D ≈ 140 at the same
conditions as in figure 6(a) is shown in figure 6(b), where the motion of the cylinder is
found to be oblique and periodically oscillating. It is noted that the non-dimensional
spatial amplitude of the transverse motion of a freely falling cylinder with small density
difference, i.e. ρs/ρf � 1.014, is given by the following formula: Am/D = 0.034 +
3.38 × 10−4G with R2 = 0.99566.

Snapshots of the instantaneous pressure coefficients along the cylinder surface at
the same conditions as in figure 6(a) are shown as thick lines over one period of
vortex shedding in figure 7, where those for the fixed circular cylinder at Re =156
obtained in the present study are also shown as thin lines for comparison. The angle
θ in figure 7 is measured from the stagnation point and is positive in the clockwise
direction and negative in the counter-clockwise direction. That is, it is positive on the
left (+y) surface and negative on the right (–y) surface of the cylinder. The pressure
coefficients in figure 7 are calculated using the following equation:

Cp =
p − (ps + 0.5ρf U 2)

0.5ρf U 2
=

p − ps

0.5ρf U 2
+ 1, (3.3)

where ps is the pressure at the stagnation point (θ = 0) and U is the free-stream
velocity (U∞) in the fixed cylinder case and the terminal velocity (Ut ) in the freely
falling cylinder case. At almost all times and along the cylinder surface for |θ | > 40◦,
the pressure coefficients of the freely falling cylinder are negative but smaller in
magnitude than those of the fixed cylinder.

The time-averaged pressure coefficients at ρs/ρf = 1.010 and G =138 (Re = 156)
along the surface of the freely falling circular cylinder for the eight different
combinations of constraints in the numerical experiments are shown in figure 8,
where that of the fixed cylinder at Re = 156 is also shown for comparison. One can
clearly see the effect of the transverse motion of the cylinder. That is, the pressure
coefficients without the transverse motion are nearly the same as that for the fixed
cylinder, while those with the transverse motion have a smaller magnitude in the
negative region (|θ | > 40◦) than that for the fixed cylinder. A free-fall cylinder without
any transverse constraint will tend to translate to the low-pressure side, where a
vortex begins to roll up and then separate. This tendency turns out to be similar
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Figure 8. Time-averaged pressure coefficients along the surface of the freely falling circular
cylinder for the eight different combinations of constraints at ρs/ρf = 1.010 and G = 138
(Re =156). The pressure coefficient for the fixed circular cylinder at Re = 156 is also shown
for comparison.

to the existence of suction flow on the low-pressure side such that the pressure on
this side recovers with the vortex separation retarded. Consequently, St of the freely
falling cylinder is reduced in comparison with that of the fixed cylinder case owing
to the transverse motion.

Figure 9 provides a comparison of the average drag coefficients (CD = Drag/

(0.5ρf U 2
t D)), the amplitudes of the lift coefficient (CL), moment coefficients

(CT = Moment/(0.5ρf U 2
t D2)), and the amplitudes of angular oscillation for the eight

different combinations of constraints in the numerical experiments. It is shown that
the lift coefficients with transverse motion are reduced to approximately 1/4 of those
without transverse motion and that the drag coefficients with transverse motion
are about 8 % less than those without transverse motion. It is remarkable that the
moment coefficients do not follow the pattern of drag and lift coefficients in the
dependence on the transverse motion but depend on the combination of transverse
and angular oscillations. In fact, CT increases in the order (111), (011), (101), (001),
(110), (010), (100) and (000) and it is physically reasonable that the angular constraint
should give a higher CT than the transverse constraint. However, constraint of Up

seems to have little effect on CT as can be clearly seen by comparing cases (111) and
(011). The same is true for the cases (101) and (001), (110) and (010), and (100) and
(000) cases. CT of a fixed cylinder is more than double that of a freely falling cylinder.
As shown in figure 9(d), the amplitude of angular oscillation is very small, which can
be conjectured from the fact that the rotational motion of a freely falling cylinder
has a negligible effect on the reduction of the Strouhal number (table 2).

3.4. The effect of large density difference

In the previous section, the Galileo number was the primary parameter in describing
the motion of the cylinders. However, as mentioned in Introduction, the motion of a
freely falling or rising cylinder in an infinite fluid is governed by two dimensionless
parameters, the Galileo number and the solid/fluid density ratio (Jenny et al. 2004).
In this section, cases with wider range of the density ratio, i.e. 0.5 � ρs/ρf � 4.0 are
investigated.
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Figure 9. Comparison of (a) the average drag coefficients, (b) the amplitudes of lift coefficients,
(c) the amplitudes of moment coefficients, and (d) the amplitudes of angular oscillation of the
freely falling cylinder for the eight different combinations of constraints at ρs/ρf =1.010 and
G =138 (Re = 156).

G = 62 G = 107 G = 151 G = 163

ρs/ρf Re St ρs/ρf Re St ρs/ρf Re St ρs/ρf Re St

0.50 66.3 0.1226 0.50 120.5 0.1540 1.10 170.3 0.1718 0.50 187.9 0.1677
0.85 65.9 0.1270 0.85 119.4 0.1570 1.20 170.0 0.1723 0.70 186.2 0.1699
1.25 65.8 0.1298 1.25 118.8 0.1595 1.30 169.9 0.1729 0.80 185.5 0.1709
1.40 65.8 0.1306 1.40 118.6 0.1601 1.40 169.6 0.1735 0.90 184.8 0.1720

2.00 168.5 0.1761
4.00 166.8 0.1801

Table 3. St and Re for a wide range of the solid/fluid density ratio and the Galileo number.

To see the effect of the density ratio, the following 18 cases are considered: (G,
ρs/ρf ) = (62, 0.50), (62, 0.85), (62, 1.25), (62, 1.40), (107, 0.50), (107, 0.85), (107, 1.25),
(107, 1.40), (151, 1.10), (151, 1.20), (151, 1.30), (151, 1.40), (151, 2.00), (151, 4.00), (163,
0.50), (163, 0.70), (163, 0.80), (163, 0.90). The Strouhal numbers from all the above
cases are shown in table 3, where it is easily seen that St increases linearly with the
density ratio when the Galileo number is fixed. Considering the fixed cylinder case as
a limiting one of ρs/ρf → ∞ and the linearly increasing relation of St to ρs/ρf , the
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Figure 10. Effect of the solid/fluid density ratio on the St–Re relation in a laminar flow
around a freely falling or rising circular cylinder. The thick line corresponds to the fixed
cylinder case obtained from the present calculation, while the thin lines represent equation
(3.4) for ρs/ρf = 0.5, 0.85, 1.25, 1.4, 2.0 and 4.0.

following equation is formulated for St = f (ρs/ρf , Re):

St =

(
ρs/ρf + A

ρs/ρf + B

)
Stfixed =

(
ρs/ρf + A

ρs/ρf + B

)
(0.2672 − 1.0162/Re0.5), (3.4)

where A and B are constants and Stfixed = 0.2672 – 1.0162Re−0.5 represents the St–Re
relation for a fixed circular cylinder in a two-dimensional wake flow, obtained in § 3.1.
The constants A and B are found to be 0.8755 and 1.0792, respectively, from the
Levenberg–Marquardt method with R2 = 0.99795. Equation (3.4) and St–Re−0.5 data
for ρs/ρf = 0.5, 0.85, 1.25, 1.4, 2.0 and 4.0 are shown in figure 10, where results for
a small density difference (ρs/ρf ≈ 1) of § 3.3 are also shown. It is easily seen that
equation (3.4) is an excellent candidate for representing St = f (ρs/ρf , Re) for the
two-dimensional motion of a freely falling or rising circular cylinder in an infinite
fluid. As the solid/fluid density ratio increases, the Strouhal number also increases
and the freely falling cylinder has a higher Strouhal number than the freely rising
one when the Reynolds numbers are the same.

4. Concluding remarks
The flow around a freely falling or rising circular cylinder in an infinite fluid

has been investigated using an adaptive P2P1 finite-element formulation based on
h-refinement, and a combined formulation of the governing equations for the fluid
and the dynamic equations for the cylinder. From the present study, the following
conclusions can be drawn.
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1. The present adaptive code based on h-refinement is efficient in accurately
resolving the wake flow behind a blunt body. The predicted St–Re relationship
is very accurate with a reasonable number of nodes compared with the previous
results.

2. The direction of the angular velocity vector ω of the falling cylinder in infinite
fluid is given by the cross-product of the gravitational acceleration and the velocity
vector in the transverse direction, which is in accordance with the Bernoulli theorem.

3. From numerical experiments, it has been found that the reduction of St for
the freely falling cylinder is attributed to the transverse motion of the cylinder. A
freely falling cylinder without any transverse constraint will tend to translate to the
low-pressure side, where a vortex begins to roll up and then separate. This motion has
a similar effect as the existence of suction flow on the low-pressure side so that the
pressure on this side recovers with the vortex separation retarded. Consequently, St
of the freely falling cylinder is reduced compared to that of the fixed cylinder owing
to the transverse motion.

4. It has been found that the non-dimensional spatial amplitude of the transverse
motion of a freely falling cylinder with small density difference, i.e. ρs/ρf � 1.014,
has the following linear relationship with the Galileo number: Am/D = 0.034 +
3.38 × 10−4G.

5. Owing to pressure recovery on the low-pressure side by the transverse motion,
a freely falling cylinder experiences a smaller lift than a fixed cylinder at the
corresponding Reynolds number. The maximum drag coefficient of the freely falling
cylinder is also smaller than that of the fixed cylinder since the freely falling cylinder
tends to move to a low-pressure region by the transverse motion. The moment
coefficient CT increases in the order (111), (011), (101), (001), (110), (010), (100) and
(000) of constraint combinations and the angular constraint gives a higher CT than
the transverse constraint. CT of a fixed cylinder is more than double that of a freely
falling cylinder.

6. As the solid/fluid density ratio increases, the Strouhal number of a freely falling
or rising cylinder also increases so that the freely falling cylinder has a higher Strouhal
number than the freely rising one when the Reynolds numbers are the same. The effect
of the solid/fluid density ratio and the Reynolds number on the Strouhal number
for a freely falling or rising cylinder is correlated well with the following formula:
St =(ρs/ρf + A)/(ρs/ρf + B) × Stfixed.

H.G.C. was supported by the Korea Science and Engineering Foundation (KOSEF)
grant (No. R01-2006-000-11122-0), subsidized by the Ministry of Science and Techno-
logy (MOST), and J.Y.Y. by Micro Thermal System Research Center at Seoul
National University under the auspices of KOSEF.

Appendix. Numerical method
A. 1. Governing equation for fluid and P2P1 Galerkin formulation

The governing equations for an incompressible flow with moving boundaries are the
Navier–Stokes equations and the continuity equation as follows:

ρf

(
∂u
∂t

+ {(u − um) · ∇ }u
)

= ∇ · σ̃

where σ̃ = −pĨ + τ̃ , τ̃ = µ{∇ u + ( ∇ u)T}.
(A 1)

∇ · u = 0, (A 2)
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where u is the velocity vector, um is the mesh velocity, σ̃ is the stress tensor, p is
the pressure, τ̃ is the shear stress tensor which is linearly related to the deformation
tensor in the Newtonian fluid, and µ is the dynamic viscosity of fluid. The boundary
conditions are as follows:

u = U on Γg,

σ̃ · n = −pn + µ
[

∇ U + ( ∇ U)T
]

· n on Γh,

}
(A 3)

where Γ g is the part of the boundary where the Dirichlet boundary condition for
velocity (g) is prescribed, Γh is the other part of the boundary where the Neumann
boundary condition for velocity (h) is prescribed.

In the FSI problems, the interface between the fluid and the structure often changes
in time and the computational domain should be changed accordingly. To do this,
we use the ALE technique. In the ALE technique, the mesh velocity um is obtained
by solving the following Laplace equation:

∇ · (∇um) = 0 (A 4)

Applying the P2P1 Galerkin finite element method to equation (A 1) and equation
(A 2) and invoking the divergence theorem, we arrive at the following weak
formulation:

Find u ∈ H 1(Ω), p ∈ L2(Ω) such that∫
Ω

[
W · ρf

(
∂u
∂t

+ {(u − um) · ∇ }u
)

+ ∇ W : σ̃

]
dΩ −

∮
Γ

W · (σ̃ · n)dΓ

+

∫
Ω

q ( ∇ · u) dΩ = 0 (A 5)

for all admissible functions W ∈ V, q ∈ P

where V = {W |W ∈ H 1(Ω), W = 0 on Γg}, P = {q|q ∈ L2(Ω)}
where Ω is the fluid domain, Γ is the boundary of fluid domain which consists
of Γ g and Γ h, W is a vector corresponding to the momentum weighting function
(W =

∑
i (αiNiex + βiNiey + γiNiez), where αi , βi and γ i are arbitrary constants, Ni

is the shape function for the velocity at ith node point, and ex , ey and ez are unit
vectors in the x-, y- and z-direction, respectively), q is the weighting function for
pressure (q =

∑
i λiMi , where λi is an arbitrary constant and Mi is the shape function

for the pressure at ith node point), and n is the unit normal vector outward from the
boundary of fluid domain. For time integration, the Crank–Nicolson scheme, which
is second-order accurate and unconditionally stable, is to be used.

A. 2. Equation of motion for a circular cylinder

The governing equations for a rigid circular cylinder are Newton’s second law for the
translational motion,

mp

dV p

dt
= Fp + Gp (A 6)

and the Euler equations for the rotation,

Ip

dωp

dt
= Tp, (A 7)

where mp is the mass of the cylinder, Ip is the moment of inertia of the cylinder, V p

(=[Up , Vp,Wp]) is the translational velocity vector of the cylinder, ωp is the angular
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velocity vector of the cylinder, Gp is the body force exerted by external fields such as
gravity, Fp and Tp are the hydrodynamic force and moment acting on the cylinder,
respectively. For a circular cylinder of radius a, mp = ρf πa2 and Ip = mpa2/2.

Let Γp be the surface of the circular cylinder. Then the hydrodynamic force Fp

and moment Tp are obtained by integrating the fluid stress over the cylinder surface,

Fp = −
∮
Γp

σ̃ · ndΓ , Tp = −
∮
Γp

(x − Xp) × (σ̃ · n)dΓ , (A 8)

where Γ p is the boundary of the cylinder surface, σ̃ is the traction acting on the fluid
along Γ p and n is the unit normal vector outward from the fluid domain along Γp .
The centroid Xp and the orientation Θp of the cylinder are updated using a forward
Euler finite difference scheme,

Xp(tn+1) = Xp(tn) + �tV p(tn), Θp(tn+1) = Θp(tn) + �tωp(tn). (A 9)

A. 3. Combined formulation

T. I. Hesla (1991, unpublished note) proposed the combined formulation in a fluid–
particle system, which incorporates both the fluid and the particle equations of
motion in a single coupled variational equation so that the hydrodynamic forces and
moments need not be explicitly computed. This comes out naturally, since those fluid
forces are internal when the fluid and the structure are considered as one system.
The starting point for the combined formulation is equation (A 8), which represents
the hydrodynamic force and moment acting on the cylinder. Utilizing the intrinsic
feature of the velocity basis function, they can be represented as follows:

Fp = −
∮
Γp

σ̃ · n dΓ = −
∑
i∈Γp

∮
Γp

Ni(σ̃ · n) dΓ ,

Tp = −
∮
Γp

(x − Xp) × (σ̃ · n) dΓ = −
∑
i∈Γp

∮
Γp

Ni(x − Xp) × (σ̃ · n) dΓ .

⎫⎪⎬
⎪⎭ (A 10)

where Ni is the shape function for the velocity at ith node point on the cylinder surface.
On the other hand, using the weak formulation of the Navier–Stokes equations in
equation (A 5), the following two equations are readily obtained:∫

Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u

)
+ ∇ Ni · σ̃

]
dΩ =

∮
Γ

Ni(σ̃ · n) dΓ , (A 11)

(x − Xp) ×
∫

Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u

)
+ ∇ Ni · σ̃

]
dΩ = (x − Xp)

×
∮
Γ

Ni(σ̃ · n) dΓ . (A 12)

Substituting equation (A 11) and equation (A 12) into equation (A 10), one can
obtain the following equations:

Fp = −
∑
i∈Γp

∫
Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u

)
+ ∇ Ni · σ̃

]
dΩ,

Tp = −
∑
i∈Γp

〈
(x − Xp) ×

∫
Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u

)
+ ∇ Ni · σ̃

]
dΩ

〉
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 13)
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where the right-hand sides of equations (A 13) can be obtained from the implicit finite
element discretization of the Navier–Stokes equations so that it is not necessary to
calculate the hydrodynamic force and moment on the surface of the cylinder explicitly
when solving the equations of motion of the cylinder. Finally, substituting equations
(A 13) into equation (A 6) and equation (A 7), the following combined formulation
for the motion of a cylinder is derived:

mp

dV p

dt
= −

∑
i∈Γp

∫
Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u
)

+ ∇ Ni · σ̃
]
dΩ + Gp,

d(Ipωp)

dt
= −

∑
i∈Γp

〈
(x − Xp) ×

∫
Ω

[
Niρf

(
∂u
∂t

+ {(u − um) · ∇}u
)

+ ∇ Ni · σ̃
]
dΩ

〉
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 14)

Note that the fluid variables (u, v, p) and the cylinder variables (Up , Vp , ωp) are
coupled implicitly in the combined formulation. After performing the finite element
discretization of equation (A 5) and equations (A 14) with a kinematic constraint, the
following form of the global matrix equation for the fluid–structure system can be
obtained:⎡

⎢⎢⎢⎢⎢⎣

Auu Auv Bu CuUp
0 Cuωp

Avu Avv Bv 0 CvVp
Cvωp

(Bu)
T (Bv)

T 0 0 0 0
DUpu DUpv EUpp mp 0 0
DVpu DVpv EVpp 0 mp 0
Dωpu Dωpv Eωpp 0 0 Ip

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

u

v

p

Up

Vp

ωp

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

fu

fv

0
gUp

gVp

gωp

⎞
⎟⎟⎟⎟⎟⎠, (A 15)

where part [C] represents the kinematic constraint,

[C] =

[
CuUp

0 Cuωp

0 CuVp
Cvωp

]

which should be satisfied on the surface of the cylinder,

u = Upex + Vpey + ωpez × (x − Xp). (A 16)

The global matrix in equation (A 15) is preconditioned by an AILU preconditioner
(Nam et al. 2002) and solved iteratively by the Bi-CGSTAB (Van der Vorst 1992)
solver. To improve the performance of the AILU preconditioner, an efficient variable
reordering technique and an element reordering technique using the Cuthill–Mckee
algorithm (Saad 1996) are also applied, by which the newly reordered global matrix
has a much narrower bandwidth than the original one.

The globally assembled matrix equation (A 15) is solved simultaneously (implicitly).
However, note that as in equation (A 9), the position for the cylinder is updated
explicitly. For more detailed information of the combined formulation, refer to Hu
et al. (2001).

A. 4 Mesh refinement

To predict the behaviour of the wake behind a cylinder accurately, the mesh around
the cylinder and in the wake region must be fine enough. To do this with a mesh
generator without an adaptive technique, a very large number of elements or nodes
are required. In the present study, an adaptive technique based on h-refinement, which
uses shear stress error as a posteriori error estimator (Nithiarasu & Zienkiewicz 2000)
is used to reduce the number of elements or nodes while resolving the wake flow
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Figure 11. Four cases of subdivision when an element (a) needs to be subdivided or (b)
does not need to be divided depending on whether neighboring elements have already been
subdivided or not.

accurately. The error in the finite element solution is the difference between the exact
and approximate solutions, which can be written for shear stress as follows:

eτ = τ − τ h, (A 17)

where superscript h indicates the finite element solution. As in all problems
requiring numerical analysis, since we do not know the exact solution, we need an
alternative approximation to it. The trial functions (linear with C0 continuity) result
in a discontinuous approximation of stresses in the present study. The acceptable
continuous solution can be obtained by a projection or averaging process in which
the stress is assumed to be interpolated using the same function and thus the error in
the stresses can now be obtained as

eτ ≈ τ ∗ − τ h (A 18)

where τ ∗ is the stress obtained from the projection process (Zienkiewicz & Zhu 1987)
In the present study, we have used the L2 norm of shear stress error measure as

follows:

‖eτ ‖ =

⎛
⎝∫

Ω

eT
τ eτ dΩ

⎞
⎠

1/2

. (A 19)

The above error can be calculated by summing up all the elemental errors as

‖eτ ‖2
=

Nelem∑
i=1

‖eτ ‖2
i = Nelem(eavg )

2 (A 20)
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(a) (b)

(c) (d)

Figure 12. (a) Initial mesh, (b) mesh after 10 refinements, (c) close-up view of (a), and (d)
close-up view of (b).

where Nelem is the total number of elements and eavg is the average error. It is
convenient to express the error as a percentage as

η =
‖eτ ‖
‖τ‖ × 100(%) (A 21)

where ‖τ‖ is the L2 norm of the shear stress obtained from the projection process.
We use the following form of refinement strategy, which gives a mesh with equal

error over every element:

hnew = hold

ζ

E
(A 22)

where is ζ the allowed error and E is the element error indicator given by

E =
‖eτ ‖i

‖τ‖ N
1/2
elem . (A 23)

If the new element size predicted by the above procedure is smaller than the old
element size, the element is refined. In the present study, it is subdivided into two
or three or four elements depending on whether neighbouring elements have already
been subdivided. To avoid very small elements, a minimum allowable size is given as
input.
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Figure 13. Contour plots of error divided by the norm of shear stresss on (a) the initial
mesh, (b) mesh after 10 refinements.

The subdivision schemes used in the present study are shown in figure 11(a)
and figure 11(b). First, vertex nodes in the elements where subdivision is needed,
i.e. hnew < hold , are added and the new elements due to these added vertex nodes,
including both the original elements and the neighbouring elements, are numbered
as in figure 11(a) depending on whether neighbouring elements have already been
subdivided. Secondly, elements where subdivision is not needed, i.e. hnew � hold , are
subdivided and are numbered as in figure 11(b) depending on whether neighbouring
elements have already been subdivided. After adding vertex nodes where subdivision is
needed, mid-nodes are added. The element reordering using Cuthill–Mckee algorithm
is performed one more time because the global matrix after the mesh refinement has
a much wider bandwidth than that before. An example of mesh refinement is shown
figure 12, which shows an initial mesh and the mesh after 10 refinements. It is easily
seen in figure 12 that the mesh around the cylinder and in the wake region is refined
excellently and the mesh refinement technique works very well. The contour plots
of error divided by the norm of the shear stress on the meshes in figures 12(c) and
12(d) are also shown in figures 13(a) and 13(b), respectively. Note the difference in
the contour levels, i.e. the minimum level of figure 13(a) is larger than the maximum
level of figure 13(b). Note also that the error contours in figure 13(b) are very similar
to the pattern of vortex shedding. This is quite a natural result considering that the
shear stress error was used as a posteriori error estimator.
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